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SPTN DYNAMICS OF MANNED SPACE STATIONS*

By Peter R. Kurzhals and Claude R. Keckler

SUMMARY

An investigation of the spin dynamics of manned space stations has been con-
ducted. The rigid-body equations of motion for arbitrary rotating stations were
outlined and programed on an electronic data processing system. Docking impacts,
attitude-system torques, mass unbalances, and transient crew motions were simu-
lated in these equations, and a fourth-order Runge-Kutta integration procedure
was used to determine the resultant station motion.

A toroidal configuration spinning about the axis of maximum moment of inertia
was selected for the computer study, and results are presented in nondimensional
form. The results are given as the traces of the station axis of symmetry in
fixed space and as the time histories of the nondimensional angular velocities and
attitudes of the station. This representation provides a simple physical picture
of the station motion and of the time variation of the primary motion coordinates.

The results of this analysis indicated that the applied moments, mass unbal-
ances, and crew motions produced undamped station wobbling, which to the crew
would appear as a continuous rolling motion of the station flcor. Since the
undamped rolling motions produced by the disturbances, when coupled with the sta-
tion rotation, could possibly lead to nausea and disorientation of the crew, a
means of damping these motions is desirable. For this study two damping systems
were considered, a gyroscopic wobble damper and a proportional jet damper. These
systems, in general, were able to minimize the effects of the station wobble on
the crew by reducing the apparent rolling motions to a small tilt of the station
floor. The gyroscopic damping system was more efficient than the proportional
Jjet system for small wobble angles, but the jet system was more effective than
the gyroscopic system for the large wobble angles.

INTRODUCTION

Current concepts of manned space stations in general require rotation about
a central axis to produce an artificial gravity field for the crew. Such rotation

*Phe information presented herein is based upon a thesis entitled "Spin
Dynamics of Space Stations Under Transient and Steady-State Excitations and Sta-
bilizing Responses" submitted by Peter R. Kurzhals in partial fulfillment of the
requirements for the degree of Master of Science in Aerospace Engineering,
Virginia Polytechnic Institute, Blacksburg, Virginia, June 1962.



also provides inherent stability and allows the station to maintain its orienta-
tion in space. However, there are dynamics problems arising from the wobbling
motions of a spinning station under applied disturbances which must be investi-
gated before any manned space stations can be safely operated.

In order to study the station dynamics it is necessary to define the equa-
tions of motion for a vehicle in space under the influence of various applied
forcing parameters and to integrate these equations to determine the changes in
the station's motion. A method of damping or minimizing such changes must then
be provided.

Basic work on the dynamics of rotating bodies has been done in references 1
to 3, and equations of motion for an arbitrary spinning body are presented in
reference 4. A number of simple computer solutions and approximate analytical
results of these equations with steady-state conditions and specific configura-
tions have also been obtained for the effects of rotating machinery, static mass
disturbances, and applied moments.

The motion of a rotating cylinder with static product-of-inertia changes and
external moments was considered by Grantham in reference 5, and a number of com-
puter solutions were presented. This study was then extended, by approximate
solutions developed by Leon in reference 6 and Suddath in reference 7, to take in
several other configurations.

Subsequently, the use of a rotating precession wheel to damp the wobbling
motions resulting from these applied excitations was investigated by Adams in
reference 8 and by Suddath in reference 9. A method of damping by means of a
Jjet system was also suggested by Martz in reference 10.

The present analysis extends the previous work to determine the transient
and steady-state effects of a wide range of applied disturbances on the motion
of rotating space stations with and without internal stability systems. The
results of this study are of value in the design of any orbital rotating vehicle,
since they can be used to predict the approximate dynamics of these vehicles and
to define systems for minimizing any adverse wobbling motions.

SYMBOLS
a acceleration of moving mass, ft/sec2
G damping moment, ft-1b
H angular momentum, ft-lb-sec
I moment or product of inertis, slug—ft2
K1:Ko gain factors for gyroscopic wobble damper, sec
K5,K4 gain factors for Jet damper, ft-1b-sec



T mey

X,Y,Z

X}y’Z

total applied torque, ft-1b
external moment, ft-1b

mass of station without moving mass, slugs

moving mass, slugs

constant defining center-of-gravity change, QE@EQ——, slugs
mg + My

radial coordinate of moving mass measured in XpYy-plane, ft

nondimensional transfer time for moving mass, value of T for mass
transfer

time, sec

inclination angle between the Zg- and. the Zfs—axis, deg (fig. 33)
angle between the Xp-axis and the XpgYpg reference plane, deg (fig. 33)

velocity of moving mass, ft/sec

angle between the Y -axis and the Xp Ypg reference plane, deg (fig. 33)

reference axes

position coordinates of moving mass in body-axis system, Tt
angular position, deg

nondimensional inertia ratio, I/Iz,o

position angle for Zy-axis, deg

nondimensional applied torque, L/Iz,on,02
angular velocity of moving mass, radians/sec

nondimensional time, Qz,ot
modified Fuler angles, deg (fig. 32)
body angular velocity, radians/sec

nondimensional angular velocity, Q/Qz,o



Subscripts:

av average value

b body coordinates

fs fixed space coordinates

g gyroscopic damper

1im maximum or minimum value

t total value

o initial value

X,¥,% component for X-, Y-, or Z-axis

Xy,XZ,yz component for the XY-, X4-, or YZ-plane
A dot over a symbol denotes the derivative with respect to time.
A bar over a symbol denotes a vector.

A tilde (~) over a symbol denotes a matrix.
ANALYSIS

Presentation of Results

The nondimensionalized equations of motion developed in the appendix were
programed on an electronic data processing system with a fourth-order Runge-Kutta
integration procedure. The effects of various disturbances, with and without a
flywheel and a proportional jet stability system, have been investigated for the
configuration of figure 1 and the results are shown in figures 2 to 31.

The characteristic station motion for each type of disturbance is repre-
sented by the trace of the station axis of symmetry in fixed space. A solid line
is used for this trace during the time the disturbance is applied, and a dashed
line designates the trace after this time. The symmetry-axis trace is obtained
by plotting the inclination angle U between the symmetry axis and a fixed refer-
ence line against the angular position & of the symmetry axis measured in a
plane perpendicular to the fixed reference line. This type of plot allows a
simple visualization of the station motion with respect to a fixed coordinate

system.

In addition, time histories of the attitudes and body angular velocities
are presented for the example station. To allow a more general application of
these results the time histories are given as nondimensional gquantities,
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independent of the station spin rate and size. This nondimensionalization process
is described in the appendix.

The example station, shown in figure 1, has a diameter of 30 feet and would
be capable of housing a crew of three astronauts. The basic station consists of
a rigid central module and an inflatable outer torus connected to this module by
four spokes. The central module, which contains most of the station instrumenta-
tion and equipment, would be used for the ascent and reentry phase of the mission
while the erectable torus would serve as living quarters for the crew during the
orbital flight.

For the present study the orbital weight of the example station is assumed
as 8,100 pounds, the station moments of inertia are taken as

I, = 7,500 slug-ft<

7,500 slug-fte

=
I

= 10,000 slug-ft2

—
N
i

and the station is initially rotating about its Z-axis. The results obtained for
this station should be indicative of the motions of any station spinning about

its maximum axis of inertia. Wherever it is believed to be necessary, the effects
of the station inertia distribution are also considered.

The stability-system parameters selected for the example station are

1
Hg = -55 Iz,00z,0
Kq = 20 radians per radian/sec
Ko = 20 radians per radian/sec
- _1
K3 —"56'Iz,oﬂz,o
- _ 41
Ky =-25 1z,0%,0

These system characteristics should represent reasonable values for space use.
Thus, for the 30-foot station with a spin-axis moment of inertia of

10,000 slug—ft2 and a spin rate of 0.5 radian/sec, the control-wheel angular
momentum would be

Hg = -100 ft-1b-sec



corresponding to a 25-pound steel disk rotating at 500 radians/sec. For the
excitations investigated in this study, the jet system would need to develop a
maximum moment about each axis of approximately 150 ft-1b. Such a moment could
be produced by a Jjet mounted at the outside rim of the station and capable of
about 10 pounds of thrust. The carbon dioxide waste within the station could
concelivably be stored and used as a source of fuel for this system.

Applied Moments

The first disturbance to be considered is that corresponding to a docking
torque or an attitude-~jet thrust. This type of disturbance can be represented by
a constant-moment pulse applied over a period of time. The basic response of the
station and limiting wobble-angle values for this disturbance have been determined
in reference 7, but a typical case will be presented here to illustrate the type
of motion and the effectiveness of the damping systems.

A pulse moment given by

I

My = 125 ft-1b (0 £ 1 <20)

My =0 (t > 20)

was applied to the example station and the resultant undamped motion is shown in
figure 2. The symmetry axis of the station can be seen to describe an epicycloi-
dal path while the pulse moment is applied. After the moment is removed the sta-
tion's angular-momentum vector remains constant. The symmetry axis then traces
out a circle about the angular-momentum vector with a diameter defined by the
angular velocities at cutoff.

The maximum wobble angle reached leads the initial applied moment vector by
a right angle in fixed space and is given by

_ ~n0
Ulim =22

5 = 90°

The circle remaining after moment cutoff had a diameter of 6.5° with center at
U=4.5° and & = 500, corresponding to the position of the constant final
angular-momentum vector. For all these motions the attitude angles and body rates
oscillate continuously. The oscillation in the rates in turn produces a rolling
of the centrifugal force or effective gravity vector. To a crew member in the
station, this would appear as a continuous rolling motion of the station floor,
much like the rolling motion of a moving ship.

Since it is desirable to minimize this motion, attempts at reducing the
oscillations were made by using either the gyroscopic or the jet damping systems
described in the appendix. The results for the applied moment, with these sta-
bility systems in operation, are presented in figures 3% and 4. The gyroscopic
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damping shown in figure 3 reduces the maximum wobble angle, Usims from 22° to

19.50 during the application of the pulse moment. After removal of the moment,
the station wobble is transformed into a steady spin about the axis corresponding
to the station angular-momentum vector at cutoff. For the purpose of this study
the wobble is assumed to be completely damped when the station motion is damped

to within 1 percent of the final steady-state condition. The wobble after removal
of the moment was damped in T = 6.5, which is approximately equal to one spin
cycle (7 = 2x) of the station.

For the jet stability system, as illustrated in figure 4, the maximum wobble
angle is 18.1°, and the residual station wobble again damps to a steady spin about
a new axis in space. However, this Jet damping was less efficient timewise than
the gyroscopic damping and approximately 10 spin cycles were required for the
damping process.

The adverse effects of the docking torque or attitude-system moment on the
crew of the station have been eliminated by both the stability systems. However,
an attitude error remains and the station must correspondingly be provided with
an attitude system capable of maintaining the station orientation in space, if
this is required by the station mission.

Static Product-of-Inertia Disturbance

A second type of disturbance that may occur in a manned space station is that
corresponding to a dynamic mass unbalance created by crew motions or cargo shifts.
This disturbance can be approximately simulated by an instantaneous change in the
products and moments of inertia of the station. The maximum disturbance for the
example station would be one in which all three crew members moved simultaneously
to an extreme position - that is, a position where they would produce a maximum
dynamic unbalance - in the station. Assuming that each astronaut weighs
200 pounds, fully equipped, a mass unbalance of around 600 pounds would be created
by this motion. From the geometry of the station the extreme position to which
the crew, as represented by the equivalent 600-pound mass, could move is
X =12 feet, y =0, and 2z = 2.4 feet 1in terms of the body-centered coordinate

system. This motion would produce a product of inertia of Iy, = 500 slug-ft2.
The final moments of inertia after the mass transfer are approximately

I, = 7,500 slug-ft°
Iy = 7,500 slug-ft2
I = 10,000 slug-ft2

and the station response for this disturbance is shown in figure 5.

The symmetry-axis trace is basically an epicycloid which results from rolling
of the inertia ellipsoid on the fixed reference plane. In terms of Poinsot's
construction of reference 2, this path is given by the polhode rolling on the



herpolhode in the reference plane. For the example, the herpolhode corresponds
to the dashed circle in the figure and has its center in the initial product-of-

inertia plane.

The maximum inclination angle thus lies in the plane of the applied product
of inertia and is given by

I

Uyim = 21.8°

I

5 = 180°

Physically, this can be interpreted in terms of the tendency of a body to spin

about its maximum or minimum principal axis of inertia. When the spin axis is

misalined with this axis, it will tend to move toward the principal axis. How-
ever, without damping, this movement will bring about an overshoot equal to the
original misalinement, and the initial spin axis will then oscillate about the

principal axis.

It is of interest to consider the effect of a variation in the moments of
inertia on the wobble angles as produced by a mass disturbance in the station.
Consequently a series of cases were run for a range of configurations, and limit
magnitudes of the stability angles for various product-of-inertia disturbances
were determined. These results are presented in figures 6 to 10 as nondimensional
plots of the extreme values of the stability angles in terms of the inertia ratios
Ix/Iz, Iy/Iz, and Ixz/Iz. Disturbance values of Ixz/Iz of 0.01, 0.02, 0.03,
0.0%, and 0.05 are considered for Iy/Iz ratios of 0.1, 0.5, 1.0, 2.0, and 10.0
and a range of values of IX/IZ' The resultant figures may be consulted for pre-

liminary design work, and can be used to predict the approximate maximum wobbling
motions for a given mass unbalance and inertia distribution.

The maximum inclination angle for the present case was derived as

o _ tan-l _2Ixz Iy <
Uzip = tan T, - I <Iz =1
and
Iy 1 2Ixz Iy
Uyim = — tan~1 —22 =2 >1
tim = TR T T I,

and always occurred in the plane of the initial product of inertia. For configu-
rations in which Iy/T, S 1, an increase in Ix/Iz produced an increase in Uyyp

and Wiyip, while V34p 1Increased to its maximum at Ix/Iz = 1 and then decreased
with any further increase in Iyx. For configurations with Iy/Iz > 1 this trend

was reversed, and an increase in Ix/Iz produced decreases in Ugip, Viip, and

Wiime
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These results agree with the statements of reference 1 in that the station
wobble can be minimized by designing symmetrical configurations that spin about
an axis corresponding to the maximum or minimum moment of inertia. Configurations
that spin about an axis corresponding to an intermediate moment of inertia or one
of two equal moments of inertia tend to be unstable.

To determine the effect of a damping system on these wobbling motions, the
product-of-inertia disturbance, Iy, = 500 slug—ftg, for the example station was

applied with the jet or gyroscopic damper in operation. The corresponding station
response is presented in figures 11 and 12. Figure 11 illustrates the station
motion with the gyroscopic stability system. It can be seen that the symmetry-
axis trace is damped to a circle. This damping was accomplished in approximately
two spin cycles of the station. The jet stability system, which is shown in
figure 12, produces a similar damping history and again results in a circular
symmetry-axis trace. The damping time now is somewhat less than 10 spin cycles
for the station.

Both damping systems reduced the maximum angle of attack for the undamped
case and resulted in a circular motion of the symmetry axis. Since the body rates
were constant for this circular motion the effects of the wobbling motions on the
crew have been reduced to a small rotation of the centrifugal-force vector. To
the crew this would appear as a tilt of the station floor.

Temporary Product-of-Inertia Disturbances

The effect of a temporary cargo shift or crew motion, in which a mass is
moved so as to introduce products of inertia and then at some later time is
returned to its original position, will now be discussed. A temporary product
of inertia of

I

Ixz = 500 slug-ft< (0 S 1 < 20)

0 (7 > 20)

Ixz

was applied to the example station. The result is shown in figure 135. The
symretry-axis trace follows an epicycloidal path until the mass disturbance is
removed and then becomes a circle defined by the angular rates at the time of
disturbance removal. The symmetry-axls trace and the time history for this case
are quite similar to those for the applied moment.

It should be noted that the cusp of the epicycloidal motion corresponds to
the condition of zero angular velocities in the plane of symmetry; thus,

Wy = Oy = 0]
and the station is now spinning steadily about its original spin axis but with a
different orientation in space. Since the residual circle and the resultant sta-

tion wobble are defined by the angular velocities at the time of disturbance
removal, it is at least theoretically possible to minimize the station wobble by

9



either removing the mass unbalance or introducing an equal and opposite unbalance
simultaneously when the angular velocities w, and Wy are both zero. This

behavior may, of course, vary somewhat in an actual system since a true static
product of inertia is not practically feasible.

The damped motion for the temporary product-of-inertia disturbance is pre-
sented in figures 14 and 15. With the gyroscopic stability system, as shown in
figure 1%, the station wobble is damped to a steady spin. Approximately one spin
cycle was requlred for this damping after removal of the static product-of-inertia
disturbance. With the jet system, which is illustrated in figure 15, damping to
the pure spinning motion now takes place in about seven spin cycles.

Removal of the mass disturbance thus eliminates the circular symmetry-axis
motion for the damped static product-of-inertia disturbance and results in a
steady spin about the station axis of symmetry.

Combined Static Product-of-Inertia Disturbances

The motion of the station for a combined static product of inertia, or a
mass shift to a general position in the station, was also studied to determine
whether the additional terms in the equations of motion influence the basic sta-
tion or stability-system response. Correspondingly, products of inertia given by

Ixz = 500 slug-ft2
Ty, = 500 slug-ft2
Yz

_ 2
Ixy = 500 Slug—f“t

were introduced for the example station, and the resulting motion is presented
in figure 16. As expected, these results are similar to those for the single
product-of-inertia disturbance. The station motion remains epicycloidal, and
the maximum inclination angle again lies in the plane of the initial applied
products of inertia. The stability angles and angular rates also oscillate about

their principal-axis projections.

Damping for this excitation is shown in figures 17 and 18. The gyroscopic
damping, illustrated in figure 17, reduces the station wobble to approximately
half its initial amplitude in less than two spin cycles. However, a definite
wobble, with amplitude equal to the angle between the initial Zp-axis and the

principal Zy-axis, remains. With the proportional jet system more effective

damping is obtained, as shown in figure 18. The station wobble now is reduced
t0o a circular symmetry-axis trace about a new fixed space axis in about seven

spin cycles.

A comparison of these two systems then shows that the gyroscopic damper with
the full #90° gimbal deflection used for this study is not capable of completely
eliminating the wobble motions resulting from a general mass shift in the station.

10
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The maximum gimbal angle in an actual system may thus have to be limited to some
value lower than £90° to avoid the possibility of residual wobbling motions. The
jet damper, however, was able to reduce the station wobble to a steady conic
motion with its characteristic circular symmetry-axis trace; hence the effects
of the general mass transfer were restricted to a small rotation of the gravity
vector,

Transient Radial Product-of-Inertia Disturbances

Since an instantaneously applied product of inertia does not represent the
true effect of crew motion or cargo transfer in the station, a number of cases
in which & transient mass shift is simulated will now be considered. Here, again,
the maximum disturbance for the example station would be one in which all three
astronauts moved simultaneously to the outside of the station in a radial direc-
tion, or around the rim of the station in a tangential direction. For the radial
motion, corresponding to motion from the center to the rim of the station, it is
assumed that the astronauts start at the position x =0, y =0, and 2z = 0, and
move to the position x = 12 feet, y =0, and =z = 2.4 feet with a constant
initial velocity and deceleration; thus, they arrive at their final position with
zero velocity. The three nondimensional transfer times of 100, 20, and 4 corre-
sponding to slow, average, and fast motion are considered, and the final moments
of inertia after the mass transfer are

Ty = 7,500 slug-ft2

= 7,500 slug-ft°

H
<
[

= 10,000 slug-ft°

—
N
|

The final product of inertia after the mass transfer then becomes
Ixz = 500 slug—ftg, and thus these results can be directly compared with the

results for the static case.

The station motion for the transient radial mass transfer is shown in fig-
ures 19 to 21. Figure 19 corresponds to a nondimensional transfer time T
of 100, it can be seen that the epicycloidal trace of the symmetry axis has now
degenerated into a spiral. After the mass has reached its final position the
initial spin axis oscillates about the principal axis as shown by the dashed line.
The inclination angle U reaches a maximum value of 14.5° and then oscillates
about its principal-axis-of-inertia value with an amplitude of 6.5°. It should
be noted that the spin moment of inertia is increased by the radial mass transfer,
and the spin rate w, correspondingly decreases as the mass is moved outward.

The wobble frequency, which is dependent on the spin rate, is also decreased.
Figure 20 presents the station response for a nondimensional transfer time of 20.
The symmetry-axis trace begins as a spiral and then becomes an epicycloid after
the mass has reached its final position. The maximum value of the inclination
angle U is 17.20, and a wobble of 12.5° remains after the mass transfer. For

11



a further decrease in nondimensional transfer time to 4, as seen in figure 21, the
symmetry-axis trace is trochoidal, the maximum inclination angle U has increased
to 21.50, and a residual oscillation of 21.50 is produced. All of these wobbling
motions are less than those for the static product-of-inertia disturbance; thus
the static inertia product can be considered a limiting case for the radial
product-of-inertia disturbances.

The damping response of the station for a nondimensional transfer time of 20
is illustrated in figures 22 and 23. Figure 22 shows the resultant motion with
the gyroscopic stability system. The station wobble is damped to a circular
motion in which the symmetry axis describes a cone about its initial position in
space. This coning motion occurs with a frequency equal to the spin frequency,
and the stability angles and body rates are thus constant. Damping, after the
radial mass transfer, takes place in about one spin cycle.

The station response with the jet system, presented in figure 23, is similar
and leads to a coning motion with a small superimposed nutation. This damped
motion is achieved in a little less than six spin cycles after completion of the
radial mass transfer. As the body rates approach constant values with both sta-
bility systems, the effect of the transient radial mass transfer is again a small

rotation of the gravity vector.

Transient Tangential Product-of-Inertia Disturbances

In general, crew motions in a spinning station will take place around the
rim of the station to make maximum use of the artificial gravity field. Such
tangential mass transfers will now be investigated. For the toroidal station and
the extreme case of all three astronauts moving simultaneously, this tangential
transfer may be simulated by moving the astronauts from the positicn x = 12 feet,
y =0, and z = 2.4 feet around the rim of the station at a constant velocity and
in the direction of rotation, until they return to their original position. The
nondimensional times required for this motion will again be taken as 100, 20,
and 4. The moments of inertia after the mass transfer are

Ix = 7,500 slug-ft?
Iy = 7,500 slug-ft°
I, = 10,000 slug-ft°

so that the initial and final product of inertia is Iy, = 500 slug-ft2.

The response of the station is i1llustrated in figures 24 to 26. For the
nondimensional transfer time T of 100, represented in figure 24, the result was
a spiral symmetry-axis trace during the mass motion and, thereafter, a small
wobble about the symmetry-axis position corresponding to the time the mass reached
its final position. The inclination angle U increased to a maximum value of
164°, and 80° oscillations in V and W were produced. The spin rate w,

12
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decreased and became negative, while the rates Wy and w, exhibited large
oscillations about zero.

The motion of the station for a transfer time of 20, as seen from figure 25,
is similar and resulted in a maximum inclination angle of 152°. A further
decrease in the transfer time to 4, shown in figure 26, reduced the spiral
symmetry-axis trace to a trochoidal motion with wobble amplitudes only slightly
larger than those for the static product-of-inertia case.

In general, response of the station to the transient tangential product-of-
inertia disturbance was a precession of the initial spin axis with respect to the
angular-momentum vector. The spinning motion of the station was transformed into
a motion in which the initial spin axis described a cone about its original posi-
tion in space. The magnitude of the resultant cone angle was largely dependent
on the angular rate at which the mass moved and the corresponding rates of change
of the products of inertia. For the example station, maximum cone angles five to
seven times as large as those predicted for the static product-of-inertia case
were reached for positive values of V/QZ,O given by

an < _V =

100 = 0z .o = 20

)

AN
o

Outside this range and for negative values of V/Qz,o the maximum wobble angles

were approximately the same as those determined previocusly for the static product-
of-inertia disturbance.

Since the excessive wobbling of the station caused by these disturbances can-
not be tolerated by the crew, the efficiency of the stability system in reducing
the station wobble is of great importance. The station motion with the stability
system in operation is shown in figures 27 and 28. The gyroscopic stability sys-
tem, presented in figure 27, produces slow damping of the residual symmetry-axis
cone to a small principal-axis cone around the original symmetry-axis position.
The damping is accomplished within 17 spin cycles after completion of the mass
transfer.

For the proportional jet damping, illustrated in figure 28, the damping to
the principal-axis cone is considerably more effective and occurs in about three
spin cycles after the tangential motion. However, with the gyroscopic system the
spin rate returns to approximately its initial value, whereas with the Jet system
the final spin rate is reduced to half this value. The wobble effects on the
crew are again restricted to a small rotation of the gravity vector which produces
an apparent tilt of the station floor.

General Transient Product-of-Inertia Disturbances
In addition to transient radial or tangential mass transfer it is, of course,
possible to have combinations of mass transfer. One of these possible general

transient motions is illustrated in figure 29. For this example the toroidal sta-
tion was again used, and the three astronauts moved once around the rim at a

13



constant velocity from x = 12 feet, y =0, 2z = -2.4 feet to x = 12 feet,
vy =0, 2z =2.4 feet with a nondimensional transfer time of 20. Motion occurs
both along the rim and normal to the rim for this mass transfer. The final

moments of inertia are assumed to be

Ix = 7,500 slug-ft2

7,500 slug-ft°

Il

Ly
I, = 10,000 slug-ft2

The characteristic results were similar to those for the corresponding transient
tangential case, although the maximum angle of attack only reached 125°. However,
the residual cone traced out by the initial spin axis and the wobble frequency
were greater than those for the pure tangential motion.

The stability-system response for the general product-of-inertia example was
determined and is presented in figures 30 and 31. The gyroscopic damper, shown
in figure 30, now reduces the residual symmetry-axis cone to the principal-axis
cone about the initial spin-axls position in 22 spin cycles. The final spin rate
of the station i1s increased slightly over its original value by this damping

process.

The jet damping system, with the assumed control gains for the example sta-
tion, produces an increase in the residual cone angle. This is caused by the
magnitude of the damped wobble angle, which exceeds 90° after completion of the
transient mass transfer. The stability system thus will damp toward an angle
of 1800, resulting in a further magnification of the attitude error. From these
results it appears that the station angular momentum, or the Jjet control gains,
must be designed so as to 1limit the maximum station wobble to less than 900.

Increasing the control gain factors to

__ 1
Ky =-35 Iz,002,0

changed this response to the damping illustrated in figure 31. Here the Jjet
damper reduces the station wobble to the principal-axis cone in three spin cycles
after the transient mass transfer. The final spin rate of the station again is
approximately half its initial value, as was true for the pure tangential mass

transfer.

The result of the general transient crew motions with the stability systems
operating was, as expected, a small rotation of the gravity field. However, the
extremely large wobble angles produced by these motions and the pure tangential
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crew motions may make a small station, such as the one studied in this report,
undesirable for an actual orbital mission.

CONCLUSIONS

A computer study of the dynamics of manned rotating space stations under
static and transient excitations, without and with damping moments from either a
gyroscopic or a Jjet stability system, indicates the following conclusions:

1. Docking moments and mass transfer disturbances resulted in undamped sta-
tion wobbling, which to the crew would appear as a rolling motion of the station
floor. This rolling motion, when coupled with the station rotation, could pos-
sibly lead to nausea and disorientation of the crew.

2. Transient mass transfer from the center of the station to the rim of
the station or parallel to the spin axis of the station produced smaller wobble
angles than those produced by static mass transfer where the mass was moved
instantaneously.

5. Transient mass transfer around the rim of the station in the direction of
rotation resulted in maximum wobble angles five to seven times as large as those
for the static mass transfer. Motion in a direction opposite to the direction of
rotation, however, did not produce any amplification of the static results.

4. A gyroscopic damping system was capable of transforming the station wobble
produced by docking moments and temporary mass unbalances into a spin about the
final angular-momentum vector of the station. Since some of these damped dis-
turbances resulted in attitude errors, the station must be provided with an addi-
tional system capable of maintaining the station orientation in space, if such
orientation is required by the station mission. For a continuously applied
dynamic mass unbalance, the gyroscopic system reduced the resultant wobbling
motion to a smaller wobble or a spin about the maximum principal axis of inertia.

5. A proportional jet damping system reduced the station wobble for all dis-~
turbances to a steady spinning motion about an axis defined by the principal
inertia axes of the station. For temporary disturbances the spin vector for
this motion coincided with the station symmetry axis, while for continuously
gpplied disturbances this vector was alined with the principal axis of inertia.
The effects of the continuously applied disturbances and the resultant wobble
were thus reduced to a rotation of the gravity vector or a small apparent tilt
of the station floor.

6. The gyroscopic damping system produced faster damping than the propor-
tional jet system for small wobble angles, but the jet system produced faster
damping than the gyroscopic system at the larger wobble angles.

Langley Research Center,
National Aercnautics and Space Administration,
Langley Station, Hampton, Va., October 17, 1962.
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APPENDIX

EQUATIONS OF MOTION

Derivation of Equations of Motion

The motion of the space station will be defined with reference to a moving

body-axis system, and the body axes will then be related to space-fixed axes by
means of a set of modified Euler angles. These modified Euler angles, which are
illustrated in figure 32, result from three consecutive rotations. The first
rotation, about the Zpg-axis, carries the Xpg- and the Ypg-axis through an
angle V¥ measured in a horizontal plane. The second rotation, about the new
Ypg-axis, then takes the Xpg- and Zpg-axis through an angle 0 measured in a
vertical plane. Finally, the third rotation, about the new Xpg-axis, carries
the Ypg- and the Zpg-axis through an angle ¢, measured in an inclined plane,

to give the Xp-, Yp-, and Zp-axis.

The modified Euler angles may be described mathematically by expressing the

angular rates about the body axes in terms of the rotations V¥, 6, and @. These
angular rates then become

Qg =@ - ¥ sin ©
Qy = 6 cos § + ¥ sin @ cos 0 (1)

Qz = ¥ cos @ cos 6 - 9 sin ¢

and solving for the rotations results in

§ =0y + 0y tan 0 sin § + 0, tan 0 cos @
6 = Qy cos @ - Qy sin ¢ (2)
¥ = Q, cos @ sec 8 + Qy sin @ sec @

Integration of these differential equations yields the Euler angles for the system.

To aid in visualizing the station motion, an additional set of stability

angles will be introduced. The angles are shown in figure 33, and are given by
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U = cos~1(cos ¢ cos 8)
V=-0 (3)
W = sin-1(sin @ cos 0)




s o

e

Physically, U is the inclination angle between the Zy- and the Zpg-axis, and V
and W are the angles the Xp- and the Yy,-axis make with the XrgY¥pg reference

plane. The stability angles provide a simple means of determining the deviation
of the body axes from a fixed reference plane and position, and can be used as
check data for a stability or attitude-control system.

The trace of the station Z-axis in fixed space can be obtained by preparing
a polar plot with the stgbility angle U as the radial coordinate and an angle &
as the angular coordinate. The angle & is calculated from the previously com-
puted Euler angles by means of the formula

& = ¥ - tan—l<E§E_g> (4)
sin 6
In order to determine the stability and modified Euler angles, however, the
angular velocities about the body axes must first be found. These velocities can

be calculated from the expression for the time rate of change of angular momentum
which states that

ﬁfs = ifs (5)
or, with respect to body coordinates,
H, + 0p x B = T (6)
Expanding equation (6) into the component expressions for the body axes yields

I:Ix - QzHy' + QyHZ = ]-":X

Hy - Qxfly + QHx = Ly (7)

I

I'.IZ - QyHX + Qxﬂy LZ

The angular momentum is defined by the linear matrix equation
H =10 (8)
so that
Hy = IxQix - Ixyly - IxzQz
Hy = Iy0y - IyxOx - Iyz0z (9)
Hy = I207 = Ipyfy - Ioxlix |

and substituting for the angular-momentum terms of equations (7), using equa-
tions (9), results in the final equations of motion:
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= Ixfix - Ixy@y - IxzQz + Ix0x - ixyﬂy - Ixs9g

K

- 95(Ly0y - Iyp0s - Iy + 2y (1292 - Tpx0x - Loy%y)

<

> (10)
- QX(IZQZ - LaxQx - Izyﬂy) + QZ(IXQX - Ixyly - IXZQZ)

= Ip0z - Izxfx - Izydly + 1292 - Izxfx - I.zyﬂy

=
N
|

- Qy(IXQX - IyyQy - IXZQZ) + QX(IyQy - TypQg - Iyxﬂx)
J

A simultaneous solution of equations (10) for the body rates, and of equations (2)
for the Euler angles, then completely defines the angular motion of the space

station.

Nondimensional Equations of Motion

To increase the range of application of the results of this investigation,
the equations of motion are nondimensionalized by introducing a nondimensional
time T and an inertia matrix % defined by

T = Qg ot ¥ = =L (11)

o= 3 dao 4t _ __Q (12)

and the higher order derivatives, in a similar fashion, are derived as

. N
= _ an Q
a_) = =——
drt Q’Z,O
- ? (13)
g __ I
dr Iz, 09,0 )

The equations of motion 1n terms of these nondimensional parameters are,
from equations (10),
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e

7xdy - 7xy¢& - Vxay * Vily - 7"x;y‘”f\,r - Yxz®y

- @z (Yyoy - Yyzz = Yyxox) * oy(7z0z - Yzx0x - 7zyy)

Ny = 7ydy - Yyaba - Yyux * Fyy - Fyaz - Ty g (1)
- wx (7202 - Yox0x - Yzy¥y) * 0z(7xx - Yxy®y - YxoDz)
Ay = yzdy = Yoxdx = Yozydy + V27 - Vzx®x - Vzy®y
- Oy(7xx = Yay®y = Txzz) * Ox(ry®y = 7yaz - Yyxx) |
where
N —2 (15)
. o, 2
7,02 ,0

The nondimensional Euler angle rates can now be expressed from equations (2) as

i _ wx + wy tan 6 sin ¢ + w, tan 6 cos ¢'\

dr
%% = wy cos @ - wy sin @ (16)
%% = W, COS ¢ sec 6 + a&.sin @ sec 8

and again

¥_ 8 d _ 8 oy _ ¥ (17)

ar 950 ar 0,0 ar 950

It may be seen from these equations that the form of the Euler and stability
angles is not affected by the nondimensionalization process.

Disturbance Parameters and Stability Torques

Before equations (14) can be solved, the moments and products of inertia, and
the applied torques acting on the station, must be defined. The inertia terms
will, of course, be dependent upon any mass transfer within the station and must
be written to include the effects of crew movements and cargo shifts. If the
moving mass is simulated by an equivalent mass my, the moments and products of
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inertia can be written as functions of their initial values and of the position
coordinates of the equivalent mass as follows:

Ix = Ix,0 + Q(y2 + ZEiW

Iy = Iy,0 + Q(x2 + 22)

I, = Ip,0 + Q(x2 + y2) (18)
Iy = Q(xy)

Ixz = Q(xz)

Iyz = Q(yz) y

where the mass parameter Q 1s given by

_ Iyg
Q'__ms+mm (19)

The time rates of change of the inertia expressions in equations (10) then are

i, = 2q(yy + zi)\

Iy = 2q(xk + z2)

I, = 2Q(xk + y¥)

Iy = Qg + y%) (20)
I, = Q(xz + zx)

Iy, = Qyz + 23)

For the present investigation the position coordinates x, y, and 2z are
expressed as

\
x = % ax,ot2 + Vx, ot + X5 + T cOs Vb
y = % a,y,ote + Vy,Ot 4 Yo + r sin vt (21)
1
z =3 az,otz + vz,0t *+ 2o

and their time derivatives become




N-

= ax,ot + VX’Q - ry sin vt

%-

= a‘y,ot + Vy o + ry cos vt (22)

N
i

8z ob * Vz,0

The mass-transfer coordinates described in equations (21) and (22) are based
partly on the assumption that the station is initially spinning about the Zp-axis.
This assumption will be adhered to throughout the analysis. Two basic types of
motion are then defined by these equations. The first type is motion with con-
stant initial acceleration and constant initial velocity, starting from some ini-
tial position; the second type is mass transfer in the plane of rotation, along a
circular path and with constant angular velocity. These motions should approxi-
mately simulate crew movements and cargo shifts within a rotating space station.

In addition to the mass-transfer disturbances, the rotating space station
will in general be subjected to agpplied torques such as external and stability
moments. The applied torques can be written as

-fx::ﬁ'l'a; (23)

where the external moments _-17.[ represent attitude-jet thrusts or docking impacts,
and the stability moments G represent the stabilizing moments of a wobble-
damping system.

The external moments acting on the station are given by

My =My o My =My o My =Mz,0 (2k)
and describe the constant moments of a pulse-~jet system or a docking impact.

The stability moments, on the other hand, are directly dependent on the type
of damping system used. Here two systems will be considered, a primary and a
backup system. The basic system is & gyroscopic wobble damper such as that shown
in figure 34 and discussed in reference 8. This system consists of a flywheel
mounted on double gimbals, rotating at a constant rate with its spin vector par-
allel to the station spin axis. When a disturbance is introduced, the spin axis
of the flywheel is reoriented by a programed change in the gimbal attitude to
create a precessional torque which opposes the applied disturbance. The gimbal
axes will be initially oriented along the X and Y station axes as shown in
figure 35. The gimbal angles are then controlled by an analog programer so that

ax,g = Kilx Gy, g = Kol (25)

with a stop at the optimum gimbal deflection of #90°. The total angular velocity
of the flywheel axis with respect to the station axes is




Ox,t = Qx + 0y o

It

Qy,t = Oy + 4y g COS oy o (26)

Qz,t = Oz + éy,g sin ax,g

The gyroscopic moments, in terms of the flywheel angular momentum Hg and these
total angular rates, then become

Gx = Qy:tHZ:g - QZ:tHY;g

Gy = Qz,tHx,g - 9x,tHz,g (27)

Gy = Ox,tHy,g - Oy tix g

where, from figure 35,

Hy,g = g 510 ay ¢
Hy,g =‘Hg cos C{,y,g sin &X,g (28)
HZ:g = Hg COS Qy,g COS Qyx, g

Substituting in equations (27) from equations (25), (26), and (28) yields the
final expressions for the gyroscopic moments:

Gy = (Hg cos Koty cos Klnx>(ay + Koy cos KlQX>

+ <Hg cos Kpfly sin Klﬂx><QZ + Kgﬁy sin K10X>

(o]
It

y = (B sin Kgny)(gz + Koty sin K104 )

- <Hg cos Kpfly cos Klgx><gx + K1@x> (29)

[}
N
|

- -(Hg cos Ky sin KlQX>(QX + Kldx)

- (Hg sin Koy)(2y + Kafly cos K19x)
J

The linear gain factors used in equations (29) imply the assumption of a perfect
servomechanism in the programing unit; on the basis of the frequencies involved,
this assumption should introduce very little error.
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It is generally desirable to have a backup system in case of malfunction or
fajlure of the primary damper. In this study the secondary system will utilize
variable-moment jets which provide a moment proportional to the magnitude of the
excitation. Such a system could be achieved in practice by regulating the mass
flow through jets alined normal to the station X- and Y-axis as shown in fig-
ure 36. The system would use the output of two rate gyros measuring rates about
these axes, and after modifying this output to define a rate error from a mean
rate value, would actuate appropriate control valves to provide the damping
moments required to reduce the station wobble to a steady spinning or cone-type
motion. The mean rate value could be determined by periodic integration of the
rate signal over a time Increment greater than the spin period of the station.

The magnitudes of the moments exerted on the station by this system can then
be represented by

Gx = K5<Qx - Qx,av) Gy = Ku(Qy - Qy,ay) (30)

where the average angular velocities are taken as the projection of the total angu-
lar velocity vector on the station principal axes of inertia.
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Figure 3.~ Motion of example station for an applied moment with a gyroscopic stability system.
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Figure 21.- Motion of example station for a translent radial product-of-inertias disturbance and T = L.
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Figure 22.- Motion of example station for a translent radial product-of-inertia disturbance and T = 20 with
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Figure 23.- Motion of example station for a transient radlal product-of-inertia disturbance and T =20 with

a Jet stability system.
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Figure 26.- Motion of example station for a transient tangential product-of-inertia disturbance and T = k.
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Figure 27.- Motlon of example statlon for a transient tangential product-of-inertia disturbance and T =20 with
a gyroscoplc stablility system.
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Figure 28.- Motion of example station for a transient tangential product-of-inertia dlsturbance and T = 20 with

a jet stability system.
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